
Graphics Processing Units (GPUs)

Stéphane Zuckerman
(Slides include material from D. Orozco,

J. Siegel, Professor X. Li, and the H&P
book, 5th Ed.)

Computer Architecture and
Parallel Systems Laboratories
http://www.capsl.udel.edu

http://www.capsl.udel.edu/
http://www.capsl.udel.edu/

Initial Purpose of GPUs

According to Wikipedia:

“A graphics processing unit (GPU), also occasionally called
visual processing unit (VPU), is a specialized electronic
circuit designed to rapidly manipulate and alter memory
to accelerate the building of images in a frame buffer
intended for output to a display.”

GPUs were initially made to process and output both 2D
and 3D computer graphics. Two main areas require
efficient 3D graphics processing: computer games, and
real-time visualization for scientific processing.

Origins of GPUs

• As said before, GPUs were created to perform a
specific task: real-time 3D rendering

– Before GPUs: the CPU had to perform all this

– Fun fact: MMX extensions (soon to be called SSE)
appeared more or less at the same time

• Other extensions created over time include:

– IEEE-754 floating-point co-processors (early 1980s)

– Physics Processing Units (PPUs)

– Etc.

General Processing Using GPUs

• Started in early 2000s
– Diverted shader/vertex/etc. units within a GPU (e.g.

instead of storing color information, use the 32-bit word to
store an integer or floating-point value)

• While doable, programming was basically hell
– Needed to divert OpenGL commands to do your

computation
– Not all computations can easily be mapped to triangles

and/or polygons…

• Everything changed around 2006, with NVIDIA
introducing GPUs which started to get more generic,
including a C-based programming language (CUDA)

A DAXPY Example
/* Sequential code */

void daxpy(double *x, double *y, double a, size_t size){

 for (size_t i = 0; i < size; ++i)

 y[i] = a * x[i] + y[i];

}

/* OpenMP code */

void daxpy(double *x, double *y, double a, size_t size){

#pragma omp parallel default(none) shared(x,y,a,size)

{

 #pragma omp for

 for (size_t i = 0; i < size; ++i)

 y[i] = a * x[i] + y[i];

}

}

Taken from Hennessy & Patterson, Computer Architecture, 5th Ed.

A DAXPY Example

/* CUDA */

int main(void)

{

 double x = …, y = …;

 size_t size = …

 // Something is missing here... Can you see what?

 __host__

 int nblocks = (size + 255) / 256;

 daxpy_cuda<<<nblocks,256>>>(x,y,2.0,size);

}

__global__

void daxpy_cuda(double *x, double *y, double a, size_t
size)

{

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < n) y[i] = a * x[i] + y[i];

}

Taken from Hennessy & Patterson, Computer Architecture, 5th Ed.

Features of Current GPUs

• Boards have their own memory.

– Usually between 1 and 2 GB

• can go up to 6 GB on high-end models

– Much faster than the processor’s memory.

– Higher bandwidth than the processor’s memory.

• Massive Parallelism

– GPUS support thousands of threads running at the
same time.

Bandwidth

GeForce GTX 480 Intel’s i7 Extreme Edition

Courtesy of Daniel Orozco

Bandwidth (cont’d)

Courtesy of Daniel Orozco (citing NVIDIA …)

Bandwidth (cont’d)

• Usage of a GPU only makes sense if it
performs much faster than the CPU.

– E.g. we have a CPU-function func() and a GPU-
kernel kern() that perform the same task on a
large data set.

main()

time

main()

main()

main()

func()

kern() PCIe PCIe kern() main()

CPU only

with GPU

Courtesy of J. Siegel

Architecture

• In general, architectures of state-of-the-art
GPUs are kept secret but some general details
are published.

• For example NVIDIA publishes documentation
about their processors and provides a full
development toolchain to use their GPUs.

Architecture

GPUs devote most of their transistors to computational units, and very few of them for
control and cache.

GPUs are best suited for applications with simple control flow and high arithmetic
intensity.

Courtesy of Daniel Orozco

Cuda Architecture Model

• Each CPU chip has
several
multiprocessors.

• Each multiprocessor
executes exactly one
block.

• Time sharing is possible
when the number of
blocks is bigger than the
number of
multiprocessors.

Courtesy of Daniel Orozco

NVIDIA GPUs: Terminology
• Grid

– a vectorizable loop

• Thread Block
– A group of threads processing

a portion of the loop

• (CUDA) Thread
– Thread that processes one

iteration of the loop

• Global Memory
– DRAM available to all threads

• Local Memory
– Private to the thread

• Shared Memory
– Accessible to all threads of a

Streaming Processor

• Thread Processor Registers

• Warp
– A thread of SIMD instruction

• PTX instruction
– SIMD instruction

• Streaming Multiprocessor
– Multithreaded SIMD processor

• Giga Thread Engine
– Thread block scheduler

• Warp Scheduler
– SIMD Thread Scheduler

• Thread Processor
– SIMD lane

Machine Object

Program abstractions

Memory hardware Processing hardware

Warps

The program on the right
is slow because not all
threads execute the same
instructions.

The total time for
execution is:

𝑡𝑖𝑚𝑒(𝐶𝑜𝑚𝑝𝑢𝑡𝑒 1) +

𝑡𝑖𝑚𝑒 (𝐶𝑜𝑚𝑝𝑢𝑡𝑒 2).

// All threads

if (my_thd_id < 16)

{

 // Compute 1

}

else

{

 // Compute 2

}

Block Diagram of an NVIDIA GPU

• Each thread has its own PC
• Thread schedulers use

scoreboard to dispatch
• No data dependencies between

threads
• Keeps track of up to 48 threads

of SIMD instructions to hide
memory latencies

• Thread block scheduler
schedules blocks to SIMD
processors

• Within each SIMD processor:
• 32 SIMD lanes
• Wide and shallow compared

to vector processors

Block Diagram of an NVIDIA GPU (cont’d)

Simplified block diagram of a Multithreaded SIMD Processor. It has 16 SIMD lanes. The SIMD Thread Scheduler has, say, 48
independentthreads of SIMD instructions that it schedules with a table of 48 PCs.

Taken from Hennessy & Patterson, Computer Architecture, 5th Ed.

Example of NVIDIA GPU

• NVIDIA GPU has 32,768 registers

– Divided into lanes

– Each SIMD thread is limited to 64 registers

– SIMD thread has up to:

• 64 vector registers of 32 32-bit elements

• 32 vector registers of 32 64-bit elements

– Fermi has 16 physical SIMD lanes, each containing
2048 registers

Taken from Hennessy & Patterson, Computer Architecture, 5th Ed.

NVIDIA Instruction Set Architecture

• ISA is an abstraction of the hardware instruction set
– “Parallel Thread Execution (PTX)”
– Uses virtual registers
– Translation to machine code is performed in software

• Example:

shl.s32 R8, blockIdx, 9 ; Thd Blk ID * Blk sz (512 or 29)

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 R0D, RD0, RD4 ; RD0 = RD0 * RD4 (scalar a)

add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

Taken from Hennessy & Patterson, Computer Architecture, 5th Ed.

Conditional Branching

• Like vector architectures, GPU branch hardware uses internal
masks

• Also uses
– Branch synchronization stack

• Entries consist of masks for each SIMD lane

• I.e. which threads commit their results (all threads execute)

– Instruction markers to manage when a branch diverges into multiple
execution paths
• Push on divergent branch

– …and when paths converge
• Act as barriers

• Pops stack

• Per-thread-lane 1-bit predicate register, specified by
programmer

Taken from Hennessy & Patterson, Computer Architecture, 5th Ed.

Vector Processors vs. GPUs

Taken from Hennessy & Patterson, Computer Architecture, 5th Ed.

A vector processor with four lanes on the left and a multithreaded SIMD
Processor of a GPU with four SIMD Lanes on the right.

Vector Processors vs. GPUs (cont’d)

• Similarities to vector machines:
– Works well with data-level parallel problems
– Scatter-gather transfers
– Mask registers
– Large register files

• Differences:

– No scalar processor
– Uses multithreading to hide memory latency
– Has many functional units, as opposed to a few deeply

pipelined units like a vector processor

What About Non-NVIDIA GPUs?

• GPUs have two main vendors: NVIDIA and
AMD

• AMD’s GPUs have a very different micro-
architecture compared to NVIDIA’s

• AMD focuses on SIMD (ILP) where NVIDIA
focuses on SIMT (TLP)

• However, the comparison between vector
processors and GPUs is still mostly valid

The Future of GPUs
• Computer history is cyclic:

– Floating-point co-processors initially were off-chip, but finally got integrated at the die
or even core level

– Intel recently added AES instruction in its SSE ISA to help with cryptography

– TCP/IP stack implemented on network interface cards

– AES hardware implementation (often integrated on NICs)

• The convergence between CPU and GPU seems unavoidable:
– Intel is already providing GPUs on recent micro-architectures (Sandy Bridge, Ivy Bridge)

on the same die

– Intel also provides many-core chips on a board

• They don’t like to call them “accelerators” because of the obvious link to GPUs, but really, they
look A LOT like a GPU…

– AMD proposed its so-called Accelerator Processing Unit (APU) with the Fusion micro-
processor

• Single address space for both GPUs and CPUs

• MMU augmented with IOMMU for transfers between GPUs and CPUs

– NVIDIA has approached ARM to see how to use “fat cores” to embed on their cards in
order to have a more “control-friendly” set of CPUs embedded with the GPU

Warning: These are guestimations at best

References
• John L. Hennessy and David A. Patterson, Computer Architecture: A

Quantitative Approach, 5th Ed., Chapter 4
• NVIDIA white paper: NVIDIA’s Next Generation CUDA Compute

Architecture: FERMI, available at
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_
Fermi_Compute_Architecture_Whitepaper.pdf

• CUDA tutorial at SC’09:
http://www.nvidia.com/object/SC09_Tutorial.html

• Anand Tech review of some AMD GPUs:
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-
radeon-hd-6950/5

• AMD’s manual for the R600 GPU series:
http://developer.amd.com/gpu_assets/r600isa.pdf

• An interesting document on GPGPUs:
http://arkanis.de/weblog/2011-04-02-finished-my-practical-
term/gpgpu-origins-and-gpu-hardware-architecture.pdf

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/object/SC09_Tutorial.html
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://www.anandtech.com/show/4061/amds-radeon-hd-6970-radeon-hd-6950/5
http://developer.amd.com/gpu_assets/r600isa.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf
http://arkanis.de/weblog/2011-04-02-finished-my-practical-term/gpgpu-origins-and-gpu-hardware-architecture.pdf

