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Abstract: In the upcoming exa-scale era, the exploitation of data locality in parallel programs is very important

because it benefits both program performance and energy efficiency. However, this is a hard topic for graph

algorithms such as the breadth first search (BFS) due to the irregular data access patterns.

This study analyzes the exploitation of data locality in the BFS and its impact on the energy efficiency with the

Codelet fine-grain dataflow-inspired execution model. The Codelet Model more efficiently exploits data locality

than the OpenMP-like execution models which traditionally focus on coarse-grain parallelism inside loops. A BFS

algorithm is then given to exploit the locality between two loop iterations that belong to two different loops (inter-loop

locality). This kind of locality can be exploited by the codelet model but not by traditional coarse-grain execution

models like OpenMP.

Tests were performed on fsim which is a simulation platform developed by Intel for the UHPC project to design

future exa-scale architectures. The results show that this BFS algorithm saves up to 7% of the dynamic energy for

memory accesses compared to a BFS implementation based on OpenMP loop scheduling.
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1 Introduction

In the upcoming exa-scale era, architecture design
will have many cores on a chip, with many chips
forming a system. The energy efficiency then becomes
very important because of the large power consumption
[1, 2]. Hardware caches increase energy use due to
unnecessary memory accesses (loading more data than
needed) and false sharing. In some new architecture
designs, a chip has several levels of globally shared
memory for data transfers among cores. Moreover,
each core has local storage that can be accessed faster
with lower power consumption compared to accessing
shared memory. The local storage buffers data that
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might be used in the near future, thus replacing caches.
Some examples of such architectures are the IBM
CELL Broadband Engine[3], IBM Cyclops64 [4], and
Intel UHPC Straw-man architecture [5].

In architectures with local storage attached to
each core, parallel programs require software and
programmer efforts to analyze and decide how to
efficiently utilize the local storage via exploitation
of locality. This is extremely important for graph
applications such as the breadth first search (BFS)
because such applications are normally memory access
intensive, and have irregular data access patterns that
complicate exploiting locality.

Currently, there are only a few studies of the energy
efficiency issue of the BFS problem. Satish et al. [6]
claimed that their work to be “the first paper showing
energy efficiency on Graph500∗ benchmark”. They

∗The Graph500 [7] is an effort to establishe a set of large-
scale graph benchmarks for high performance computing related
applications.
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applied their BFS optimization on an Intel architecture
with 3-level caches. The most recent work on an
architecture with local storage appears to be the work
of Scarpazza et al. [8] on the Cell Broadband Engine.
Therefore, more work is needed to analyze energy
efficiency of BFS on architectures with local storage.

The execution of a typical parallel BFS algorithm
consists of many steps. Each step executes a parallel
for loop to explore part of the BFS tree. There are then
synchronizations (e.g., global barriers) between every
two adjacent loops. The BFS algorithm may have two
kinds of locality. One is intra-loop locality between
loop iterations in the same loop. The other is inter-
loop locality between loop iterations in different loops.
With this observation, this paper makes the following
contributions:

• Intra-loop locality is easy to exploit but inter-
loop locality is hard to exploit in OpenMP-like
execution models which traditionally focus on
coarse-grain parallelism inside loops. Fine-grain
execution models can easily exploit both types of
locality.

• A BFS algorithm is given to exploit inter-loop
locality based on the Codelet Model [9] which is
a fine-grain dataflow-inspired execution model.

• The localities and energy efficiencies of the
Codelet Model and the OpenMP-like execution
model are compared.

The BFS algorithms were implemented on fsim
which is a simulation platform developed by Intel
for the UHPC project [10] to design future extreme-
scale architectures. The results show that the
BFS algorithm reduces the memory access dynamic
energy consumption by 7% compared to the BFS
implementation based on OpenMP loop scheduling.

2 Background

This paper shows how to exploit locality and save
energy for the BFS on architectures with local storage
via the Codelet fine-grain execution model. This
model can be mapped to the Intel UHPC straw-
man architecture for the design of future exa-scale
architectures. This section introduces the Codelet
Model, the architecture, and the BFS algorithm.

2.1 Codelet Model

The Codelet Model is a fine-grain dataflow-inspired
computational model that relies on the dataflow
paradigm to exploit parallelism on future many-core
architectures. The units in computation of the Codelet
Model are called codelets. Each codelet is a piece
of sequential code that can be executed without
interruption. Once a codelet starts execution, it does
not need to wait for any synchronization. The model
relies on explicit data dependence specified between
the codelets. The codelets and their dependencies
form a directed graph called the codelet graph.
During execution, a codelet runtime maintains the
dependencies and schedules the codelets to the available
cores. The codelet runtime ensures the dependencies
via signals of fulfilled events from one codelet to the
specific codelet that is waiting for the events.

The Codelet Model is presented in the context of a
parallel abstract machine model. The abstract machine
consists of many nodes connected together via an
interconnection network. Each node contains a many-
core chip. The chip may have 1,000 to 2,000 processing
cores organized into groups (clusters) linked together
via a chip interconnect. These cores will be quite simple
and take less transistor space. Compared to large cores,
these smaller simpler cores consume less power and
are more simply packed on a single die. The cores in
this abstract machine model are grouped hierarchically.
The grouping of cores promotes locality in applications,
since tasks can also be grouped to target a specific
hierarchical level in the machine.

In an abstract machine, each group contains a
collection of computing units (CU) and a scheduling
unit (SU). By diversifying cores, natural strengths are
given to different components in the architecture to
perform different tasks. A SU is responsible for runtime
operations and steering computations. The number
of SUs needed differs from the number of CUs. A
heterogeneous approach maps a reasonable amount of
CUs to the SUs to provide the optimal amount of
workers to the schedulers. This division of labor
(scheduling to computation) and ratio (CUs to SUs)
should lead to a more power efficient architecture.

An abstract view of the computation unit is shown in
Fig. 1 with a group of computation cores and some local
memory. A node may also contain other resources, most
notably additional memory which will likely be DRAM
or other external storage.
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Fig. 1 Codelet Abstract Machine Model

The features of the abstract machine model are:

• Hierarchical. A system will contain many chipsi
and each single chip will contain many different
level of processors:

– Computations: nodes, chips, clusters with
computation units (CU) and synchronization
units (SU).

– Memory: main (shared) memory and local
memory (attached to a given computation
unit).

• Heterogeneous. Elements have different roles
such as:

– Computation units (the most numerous type
of cores) handle the computations.

– Scheduling units handle exceptions, hardware
failures, out-of-cluster requests, etc.
Specifically, they handle any memory
request that goes outside the cluster, or is
received from an out-of-cluster location.

2.2 Architecture

The fsim simulation platform was used to test
different implementations of the BFS algorithm. fsim
was developed to simulate (in software) the current Intel
hardware architecture prototype in the UHPC project
to test future exa-scale architectures. This simulated
architecture include two types of processors [5]:

• Control engines (CEs): cores which
execute instructions in the distributed runtime
environment, including support for peripherals,
but not direct user code. A CE matches to
a synchronization unit in the codelet abstract
machine model.

Fig. 2 A fsim shared memory block with N XEs.

• Execution engines (XEs): simple, plentiful, very
low-power cores optimized for HPC applications
that may be heterogeneous when disparate types of
fixed-function logic or accelerators are useful. The
XEs run the application (user) code. Each XE is
assigned thread-local storage such as registers and
private scratchpad memories. An XE matches to
a computation unit in the codelet abstract machine
model.

fsim simulates the Intel’s straw-man architecture.
This architecture is composed of different blocks of
XEs and CEs in the processor chip:

• Block: A group of N XEs and 1 CE with a local
memory for each engine and a shared memory
between all engines.

• Cluster: A group of blocks connected by a specific
interconnect and sharing another level of memory.

• Chip: A group of clusters connected by a crossbar
switch and sharing memory.

Fig. 2 illustrates one block of N XEs. The tests used
a block of 8 XEs.

2.3 Breadth First Search

The basic breadth first search algorithm used in
this study comes from Graph500 [7]. Graph500
establishes a set of large-scale graph benchmarks for
high performance computing related applications.

The pseudo code of the breadth first search kernel
is shown in Algorithm 1. The algorithm starts with a
root vertex in the search list. The algorithm finds its
neighbors each vertex in the search list and puts them
into a new search list for future searches. Each vertex
is marked before it is put into the search list. In this
way, the algorithm avoids repeated searches of the same
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Algorithm 1: BFS algorithm pseudo code
input : Undirected graph G and starting vertex root

output: A BFS tree represented by a vector parent that
stores the parent of each vertex in the BFS tree

Data: Q is the current search list and Q′ is the search list
for the next turn

PSEUDO CODE:
foreach element e of parent do e←−1;
parent[root]← root;
Q←{root};
while Q 6= ∅ do

Q′← ∅;
foreach v ∈ Q in parallel do

foreach v′ adjacent to v in G do
if parent[v′] == −1 then

parent[v′]←v;
Q′←Q′ + {v′};

synchronization;
Q← Q′;

vertex. The algorithm terminates when the search list is
empty.

3 Algorithm

This section describes how to exploit locality for the
BFS for both the coarse-grain execution model and
the fine-grain execution model. The BFS algorithm in
Algorithm 1 has two kinds of locality. One is intra-loop
locality between two loop iterations in the same parallel
for loop. The second is inter-loop locality between two
loop iterations in different loops. Section 3.1 presents
an example to explain these two kinds of locality. Then
Section 3.2 and 3.3 introduce how to exploit the two
kinds of locality in the BFS algorithms.

3.1 Motivation

This section provides an motivating example that
explains how the codelet model can exploit both intra-
loop locality and inter-loop locality. As explained
in Section 1 and Section 2.3, execution of the BFS
algorithm unfolds into many parallel for loops that
are interleaved by synchronization between every two
adjacent loops. The program execution can be easily
represented as a codelet graph.

Fig. 3 shows an example of a piece of the program
execution with two parallel for loops where each loop
has 4 loop iterations. Each loop iteration, as well as
the start and the end of each loop, are all represented
as codelets. The dependencies among the codelets are
obvious: (1) Each loop iteration depends on the starting

Fig. 3 An example of intra-loop and inter-loop localities

codelet of its loop. (2) The ending codelet of the loop
depends on all the loop iterations in the same loop.
(3) The starting codelet of the second loop depends
on the ending codelet of the first loop to indicate the
synchronization. The codelet graph has the two kinds
of locality:

• inter-loop locality: In the codelet graph, the
codelets for the loop iterations in the same loop
may have spatial locality if their memory accesses
are continuous. For example, if codelets A1

and B1 access continuous memory, they may be
scheduled to the same processor. Then a multi-
word load instruction may load that continuous
memory, which is more energy efficient than
multiple single-word load instructions.

• inter-loop locality: Fig. 3 shows that the codelets
for the loop iterations in different loops may have
temporal locality if the data produced by one
codelet will be consumed by another codelet. For
example, if codelet A1 produces some data that
will be consumed by codelet A2, they may be
scheduled to the same processor so that A1 may
store the produced data locally (e.g., in registers or
local storage) for future use by A2.

Coarse-grain execution models such as the OpenMP
model easily exploit intra-loop locality because the
locality is within one loop. For example, the OpenMP
model allows static and dynamic scheduling with user
specified chunk sizes to exploit intra-loop locality.

However, an OpenMP-like model cannot easily
exploit inter-loop locality because the locality may
cross several loops. Such a case needs fine-grain
execution models. For example, the codelet model may
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schedule A1 and A2 to the same core. Then, A1 may
store the produced data in the local storage of the core
for use by A2.

3.2 BFS Algorithm in the Coarse-Grain Model

In Algorithm 1, adjacent loop iterations in the
same loop have spacial locality because they access
continuous elements in Q. Therefore, executing the
loop iterations in chunks will save energy. There
are fewer accesses on the global shared queue,
which reduces the total number of global memory
accesses. Moreover, an energy efficient multi-word load
instruction can be used to replace multiple single-word
load instructions.

The BFS algorithm has irregular memory access
pattern. So workload balancing will also impact
the energy efficiency by reducing the idle time of
the threads. Therefore, the algorithm implements
both static scheduling and dynamic scheduling policies
based on the OpenMP standard. Both scheduling
polices spawn a number of threads (equal to the number
of cores on the chip) at the beginning of the program.
Then, one thread (master thread) initializes the data
structures that are shared by all the threads. The parallel
execution starts when the work is distributed among
all the threads. After that, each thread will chose its
working data based on the scheduling policy. The static
and dynamic scheduling policies can be explained as
follows:

• Static Scheduling: The static scheduling policy
follows the OpenMP standard. The policy
partitions the iteration space of each parallel for
loop into chunks. Then it distributes the chunks
to the spawned threads in a Round Robin fashion.
Each thread needs to wait at the synchronization
point when it completes the workload in its
chunk. Static scheduling is usually used for
better exploitation of data locality. However,
the unbalanced nature of the BFS algorithm
results in many idle threads with small workloads
that complete their work much earlier than their
siblings.

• Dynamic Scheduling: The dynamic scheduling
follows the OpenMP standard as well. Each thread
takes a chunk of work at beginning. Once a thread
completes its work, it tries to take a chunk of new
work from the shared work queue (the search list
Q in the algorithm). Dynamic scheduling is a

Algorithm 2: BFS algorithm pseudo code for the
coarse-grain execution model. The static and dynamic
scheduling use the same algorithm except that the chunk
assignments are static or dynamic.

input : Undirected graph G and starting vertex root

output: A BFS tree represented by a vector parent that
stores the parent of each vertex in the BFS tree

Data: Q is the current search list and Q′ is the search list
for the next turn

PSEUDO CODE:
foreach element e of parent do e←−1;
parent[root]← root;
Q←{root};
while Q 6= ∅ do

Q′← ∅;
foreach chunk C of vertices ⊂ Q in parallel do

load C into local memory C′;
foreach v ∈ C′ do

foreach v′ adjacent to v in G do
if parent[v′] == −1 then

parent[v′]←v;
Q′←Q′ + {v′};

synchronization;
Q← Q′;

natural choice for BFS due to its irregular nature.
This reduces the idle time of each thread, and thus
reduces the energy waste.

The static and dynamic scheduling algorithms are
both shown in Algorithm 2. The only difference
between the two algorithms is how the chunks are
assigned to the threads.

OpenMP also has a guided scheduling policy. The
guided scheduling policy is similar to the dynamic
scheduling policy except that it allows on-the-fly
changing of the chunk sizes. The policy starts with large
chunk sizes and gradually reduces them. Eventually the
policy will reduce the chunk size to 1 and keep it stable.
Guided scheduling is not used because it is very similar
to dynamic scheduling and the variation of chunk sizes
has minor impact on the energy consumption.

3.3 BFS Algorithm in the Fine-Grain Model

As explained in Section 3.1, the BFS algorithm needs
the fine-grain execution model to exploit the inter-
loop locality. In Algorithm 1, the program repeatedly
executes the parallel for loop to enlarge the BFS tree.
When the loop iterations of a parallel for loop are
executed, they put new vertices (v′ in the algorithm)
into Q′ for the search in the next parallel for loop.
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Therefore, the loop iterations in different loops have
temporal locality.

When each loop iteration is presented as a codelet in
the codelet model, those codelets can pass data via local
storage if they are scheduled to the same core. This
exploits the locality among codelets in different loops.

However, the scheduling of codelets is not free.
The scheduling needs a codelet runtime to maintain
the dependency information and assign the codelets to
available cores. When the codelet is as small as a loop
iteration, the codelet runtime overhead can be quite
heavy. Therefore, the following approaches are used
to reduce the overhead. Since the dependencies in the
parallel for loop are quite simple, synchronization is
used to guarantee that the dependencies are satisfied.
This method eliminates the cost of maintaining the
dependency information in the codelet runtime. The
codelets can also be assigned without extra cost. If
several codelets have temporal locality, they can be
scheduled to the same core by using the local storage
to buffer the data. If two codelets have no locality, it
does not matter if they are assigned to different cores
or the same core. Therefore, either static or dynamic
scheduling can be used in the codelet execution model.

Therefore, a BFS algorithm was developed using the
fine grain-execution model shown in Algorithm 3. This
algorithm highlights the exploitation of the inter-loop
locality because it is a unique feature of the fine-grain
execution model. Local buffers QL and Q′L are used to
locally pass data from one loop iteration to another in a
different loop.

Algorithm 3 can also be viewed as a hybrid
algorithm of the fine-grain and coarse-grain execution
models. The algorithm design level uses the codelet
model to exploit the inter-loop locality. Then, the
implementation level uses synchronization (a typical
coarse-grain approach) to reduce the overhead in the
codelet runtime.

4 Test Results

Tests were conducted to study the energy efficiency
of the BFS algorithm on a many-core architecture
that has both on-chip local storage and on-chip shared
memory. The tests analyze the following:

(1) How the exploitation of intra-loop locality in the
coarse-grain execution model affects the energy
efficiency.

(2) How the exploitation of inter-loop locality in

Algorithm 3: BFS algorithm pseudo code for the fine-
grain execution model.

input : Undirected graph G and starting vertex root

output: A BFS tree represented by a vector parent that
stores the parent of each vertex in the BFS tree

Data: Q is the current search list (a global shared queue),
Q′ is the search list for the next turn (another global
shared queue), and each thread has QL and Q′

L as
local buffers (two local queues)

PSEUDO CODE:
foreach element e of parent do e←−1;
parent[root]← root;
Q←{root};
(on each thread) QL ← ∅;
while (Q ∪QL of each thread) 6= ∅ do

Q′← ∅;
(on each thread) Q′

L ← ∅;
foreach v ∈ QL in parallel do

foreach v′ adjacent to v in G do
if parent[v′] == −1 then

parent[v′]←v;
if Q′

L is full then Q′←Q′ + {v′};
else Q′

L ← Q′
L + {v′};

foreach v ∈ Q in parallel do
foreach v′ adjacent to v in G do

if parent[v′] == −1 then
parent[v′]←v;
if Q′

L is full then Q′←Q′ + {v′};
else Q′

L ← Q′
L + {v′};

synchronization;
Q← Q′;

the fine-grain execution model affects the energy
efficiency.

(3) Compares the BFS algorithms for the coarse-grain
execution model and fine-grain execution model.

4.1 Test Setup

Tests were run on the Intel fsim simulation platform
as introduced in Section 2.2. Since fsim is a functional
simulator, it cannot provide accurate execution times.
Therefore, we do not report on the algorithm
performance. However, fsim provides accurate dynamic
energy consumption measurements based on counts of
the executed instructions. Therefore, the following
focuses on the dynamic energy consumption of the BFS
algorithms.

The graphs included up to 4K vertices and 64K
edges. Larger graphs could not be tested due to memory
limitations of the simulator. The graphs were generated
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Fig. 4 Energy use by the coarse-grain dynamic scheduling
implementation for various graph sizes. The average degree per
vertex was 16.

using the RMAT algorithm that follows the parameter
setup requirements in the Graph500 specification.

The coarse-grain implementation tested different
chunk sizes for both static and dynamic scheduling
on a graph with 4096 vertices and an average vertex
degree of 16. The energy usage is shown for both
scheduling policies with different graph sizes. The
fine-grain implementation used three variants with local
buffer sizes equal to 32, 64, and 128 elements.

To make the codes extendable to support future larger
graphs, each vertex is stored in a 64-bit variable. All the
figures are normalized for better reading.

4.2 Major Observations

The test results showed that:

(1) The exploitation of intra-loop locality has minor
impact on the energy efficiency (up to 1%
reduction of the memory access dynamic energy
consumption.)

(2) The exploitation of inter-loop locality reduced the
memory access dynamic energy consumption by
up to 7%.

(3) The BFS algorithm in the fine-grain execution
model is more energy efficient than the BFS
algorithm in the coarse-grain execution model.

The results and analyses are explained in detail in the
following sections.

4.3 Results and Analysis

4.3.1 Energy Use in the Coarse-grain and Fine-
grain Implementations

The first tests evaluated the energy usage of the
BFS algorithms in both the coarse-grain and fine-grain

Fig. 5 Energy use by the coarse-grain static scheduling
implementation for various graph sizes. The average degree per
vertex was 16.

Fig. 6 Energy use by the fine-grain implementation for various graph
sizes. The average degree per vertex was 16.

execution models. Fig. 4 and 5 show the test results for
the dynamic and static scheduling in the coarse-grain
execution model. Fig. 6 shows the results for the fine-
grain execution model. The graphs had various sizes
from 32 vertices to 4096 vertices. The chunk size in the
coarse grain model was 8. The average degree of each
vertex in the graph was 16. The energy use shows that:

(1) The implementations are memory-intensive, which
is consistent with known results for the BFS
problem.

(2) The energy consumption by each part (compute,
memory, and network) roughly doubles when the
input graph size (number of vertices and number
of edges) doubles because the BFS algorithm has
linear time complexity as O(M ) where M is the
total number of edges in the graph. Note that the
number of computational instructions and memory
access instructions are both proportional to the
time complexity.
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Fig. 7 Energy consumption by the coarse-grain dynamic scheduling
implementation for various chunk sizes. The graph had 4096 vertices
with an average degree per vertex of 16.

Fig. 8 Energy consumption by the coarse-grain static scheduling
implementation for various chunk sizes. The graph had 4096 vertices
with an average degree per vertex of 16.

Chunk size from 1 to 32 were tested with average
degrees of each vertex from 4 to 32. The observations
are the same as above.

4.3.2 Comparison between static and
dynamic scheduling in the coarse-grain
implementation

The energy consumption for both static and
dynamic scheduling was measured for the coarse-grain
implementation with chunk sizes from 1 to 32. The
input graph had 4096 vertices with an average degree
per vertex of 16.

Fig. 7 and 8 show the results for the dynamic and
static scheduling implementations. The figures show
that the chunk size has little impact on the memory
access energy use. With the dynamic scheduling, the
best result (for a chunk size of 32) reduced the memory
access dynamic energy use by 1%. compared to the
worst result (for a chunk size of 1). The computational
energy saving was slightly better (up to 3% less).

Fig. 9 Comparison of energy consumption by static and dynamic
scheduling for the coarse-grain implementation. The graph had 4096
vertices with an average degree per vertex of 16.

Fig. 10 Energy consumption for BFS memory access. The average
degree per vertex in the input graph was 32. Global-Static is the coarse-
grain implementation. Local-Static are the fine-grain implementations
with local buffer sizes of 32, 64, and 128. The best input data size for the
fine-grain version was 1024 vertices with Local-Static-128 having 2% less
energy consumption for memory access than Global-Static.

Since the BFS is a memory-intensive application, the
chunk size has little impact on the dynamic energy
consumption. The same results were claimed for
sparser graphs. So the data is not reported.

Fig. 9 compares the best cases for the dynamic and
static scheduling. The dynamic scheduling is slightly
better but the difference is very small (0.9% for the
execution energy, 0.4% for the memory energy, and
0.1% for the network energy). Therefore, the major
observation is that the scheduling approach has little
impact on the dynamic energy consumption.

Therefore, the test results in this section show that
the algorithms in the coarse-grain model have little
impact on the dynamic energy. It also implies that
exploitation of the intra-loop locality has little impact
on the dynamic energy.

4.3.3 Comparison of Coarse-grain and Fine-grain
Implementations

This section describes how the inter-loop locality
affects the energy efficiency by comparing the energy
consumption by the BFS implementations using the
coarse-grain and fine-grain execution models.
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Fig. 11 Energy consumption for BFS memory access. The average
degree per vertex in the input graph was 16. Global-Static is the coarse-
grain implementation. Local-Static are the fine-grain implementations
with local buffer sizes of 32, 64, and 128. The best input data size for the
fine-grain version was 4096 vertices with Local-Static-128 having 3% less
energy consumption for memory access than Global-Static.

Fig. 12 Energy consumption for BFS memory access. The average
degree per vertex in the input graph was 8. Global-Static is the coarse-
grain implementation. Local-Static are the fine-grain implementations
with local buffer sizes of 32, 64, and 128. The best input data size for the
fine-grain version was 2048 vertices with Local-Static-128 having 4% less
energy consumption for memory access than Global-Static.

Since there is very little difference in the energy
consumption rates for the static and dynamic scheduling
algorithms on the coarse-grain implementation, the rest
of this section uses only static scheduling to represent
the coarse-grain version. Since the BFS is a memory-
intensive application, the energy use is based on the
dynamic energy consumption for memory access for
the various cases shown in Fig. 10 to 13. These
configurations used input graph sizes from 32 to 4096,
graph densities from 32 to 4 average degrees per
vertex, and various versions with static scheduling in
the coarse-grain execution model and 3 versions of
the fine-grain execution model with local buffer sizes

Fig. 13 Energy consumption for BFS memory access. The average
degree per vertex in the input graph was 4. Global-Static is the coarse-
grain implementation. Local-Static are the fine-grain implementations
with local buffer sizes of 32, 64, and 128. The best input data size for the
fine-grain version was 2048 vertices with Local-Static-128 having 7% less
energy consumption for memory access than Global-Static.

from 32 to 128. Since the intra-loop locality has little
impact on the energy consumption, the implementations
in this section only use inter-loop locality. The static
scheduling implementation in the coarse-grain model
does not exploit inter-loop locality. In the fine-
grain execution models, the exploitation of the inter-
loop locality increases as the size of the local buffer
increases.

The results show that:

• Greater exploitation of the inter-loop locality
reduces more energy use. From all the 4 figures,
the energy consumption decreases as the local
buffer size increases for graphs with 512 or more
vertices.

• Sparser the graphs result in greater energy savings.
For example, for the graph with an average
degree per vertex of 32, exploitation of the inter-
loop locality reduces the memory access dynamic
energy use by 2%. However, for the graph with
an average degree per vertex of 4, exploitation of
the inter-loop locality reduced the dynamic energy
use by 7%. This is because BFS trees in sparser
graphs are normally higher, which gives more
opportunities to exploit the inter-loop locality.

• All the fine-grain implementations use less energy
than the coarse-grain implementation.

5 Related Work

The BFS algorithm has been studied for many
years because it is a fundamental graph algorithm that
is widely used in many applications such as social
network analyses [11] and path planning [12].

There have been many studies of distributed BFS
algorithms [13–15]. In recent years, Bader and Madduri
[16] studied the BFS implementation on a large scaled
graph that achieves significant speedup on MTA-2.
Scarpazza et al. [8] studied how to effectively employ
the Cell Broadband Engine to perform BFS on large
graphs. John et al. [17] described an efficient
BFS algorithm for abstract architectures that used a
tree-structured memory model. BFS has also been
implemented on the Intel Nehalem architecture [18, 19]
and large scale distributed memory systems [20, 21].

Those studies of the BFS algorithms have focused
on performance and scalability. The major difference
between the present work and those previous studies is
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that we focus on the exploitation of data locality and
how it affects the energy efficiency.

Currently, there are only a few studies of the energy
efficiency for the BFS problem. Satish et al. [6]
claimed their work to be “the first paper showing energy
efficiency on the Graph500 benchmark”. They applied
their BFS optimization on a Intel architecture with 3-
level caches. However, the present BFS algorithm
targets architectures with local storage but no cache.

6 Conclusion

This paper shows how to exploit data locality in the
BFS application. The paper shows that the traditional
OpenMP-like execution models are unable to exploit
the inter-loop data locality that reuses data between loop
iterations of different loops. The inter-loop locality
can be exploited in a fine-grain execution model such
as the Codelet Model. A BFS algorithm is then
described using the Codelet Model to exploit the inter-
loop locality.

Tests are run on a simulation platform developed
by Intel for the UHPC project [10] for the design of
future extreme-scale architectures. The results show
that this BFS algorithm reduces dynamic energy use
by up to 7% for memory accesses compared to a BFS
implementation based on OpenMP loop scheduling.
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