
June 1993 5-1

Assignments

5
Figure 5-0

Example 5-0
Syntax 5-0
Table 5-0

Assignments
The assignment is the basic mechanism for getting values into nets and
registers. There are two basic forms of the assignment:

• the continuous assignment, which assigns values to nets

• the procedural assignment, which assigns values to registers

An assignment consists of two parts, a left-hand side and a right-hand
side, separated by the equal (=) character. The right-hand side can be
any expression that evaluates to a value. The left-hand side indicates the
variable that the right-hand side is to be assigned to. The left-hand side
can take one of the following forms, depending on whether the
assignment is a continuous assignment or a procedural assignment.

Table 5-1: Legal left-hand side forms in assignment statements

continuous net (vector or scalar)
assignment constant bit-select of a vector net

constant part-select of a vector net
concatenation of any of the above 3

procedural register (vector or scalar)
assignment bit-select of a vector register

constant part-select of a vector register
memory element
concatenation of any of the above 4

Statement type Left-hand side

5-2 June 1993

Assignments
Continuous Assignments

5.1
Continuous Assignments

Continuous assignments drive values onto nets, both vector and scalar.
The significance of the word “continuous” is that the assignment occurs
whenever simulation causes the value of the right-hand side to change.
Continuous assignments provide a way to model combinational logic
without specifying an interconnection of gates. Instead, the model
specifies the logical expression that drives the net. The expression on the
right-hand side of the continuous assignment is not restricted in any
way. It can even contain a reference to a function. Thus, the result of a
case statement, if statement, or other procedural construct can drive
a net.

The syntax for continuous assignments is as follows:

Syntax 5-1: Syntax for <net_declaration>

<net_declaration>
::= <NETTYPE> <expandrange>? <delay>? <list_of_variables> ;
||= trireg <charge_strength>? <expandrange>? <delay>? <list_of_variables> ;
||= <NETTYPE> <drive_strength>? <expandrange>? <delay>?

<list_of_assignments> ;

<continuous_assign>
::= assign <drive_strength>? <delay>? <list_of_assignments> ;

<expandrange>
::= <range>
||= scalared <range>
||= vectored <range>

<range>
::= [<constant_expression> : <constant_expression>]

<list_of_assignments>
::= <assignment> <,<assignment>>*

<charge_strength>
::= (small)
||= (medium)
||= (large)

<drive_strength>
::= (<STRENGTH0> , <STRENGTH1>)
||= (<STRENGTH1> , <STRENGTH0>)

June 1993 5-3

Assignments
Continuous Assignments

5.1.1
The Net Declaration Assignment

The first two alternatives in the <net_declaration> are discussed in
Chapter 3, Data Types (see Section 3.2.3). The third alternative, the net
declaration assignment, allows a continuous assignment to be placed on
a net in the same statement that declares that net. The following is an
example of the <net_declaration> form of a continuous assignment:

wire (strong1, pull0) mynet = enable;

Please note: Because a net can be declared only once, only one
net declaration assignment can be made for a particular net. This
contrasts with the continuous assignment statement; one net can
receive multiple assignments of the continuous assignment form.

5.1.2
The Continuous Assignment Statement

The <continuous_assign> statement places a continuous assignment on
a net that has been previously declared, either explicitly by declaration
or implicitly by using its name in the terminal list of a gate, a
user-defined primitive or module instance. The following is an example
of a continuous assignment to a net that has been previously declared:

assign (strong1, pull0) mynet = enable;

Assignments on nets are continuous and automatic. This means that
whenever an operand in the right-hand side expression changes value
during simulation, the whole right-hand side is evaluated and assigned
to the left-hand side.

The following is an example of the use of a continuous assignment to
model a four bit adder with carry. Note that the assignment could not be
specified directly in the declaration of the nets because it requires a
concatenation on the left-hand side.

5-4 June 1993

Assignments
Continuous Assignments

Example 5-1: Use of continuous assign statement

The following example describes a module with one 16-bit output bus. It
selects between one of four input busses and connects the selected bus
to the output bus.

Example 5-2: Net declaration assignment and continuous assign statement

module adder (sum_out, carry_out, carry_in, ina, inb) ;

output [3:0]sum_out;

input [3:0]ina, inb;

output carry_out;

input carry_in;

wire carry_out, carry_in;

wire[3:0] sum_out, ina, inb;

assign

{carry_out, sum_out} = ina + inb + carry_in;

endmodule

module select_bus(busout, bus0, bus1, bus2, bus3, enable, s);
parameter n = 16;
parameter Zee = 16’bz;
output [1:n] busout;
input [1:n] bus0, bus1, bus2, bus3;
input enable;
input [1:2] s;

tri [1:n] data; // net declaration.
tri [1:n] busout = enable ? data : Zee;// net declaration with

// continuous assignment.

assign // assignment statement with
data = (s == 0) ? bus0 : Zee, // 4 continuous assignments.
data = (s == 1) ? bus1 : Zee,
data = (s == 2) ? bus2 : Zee,
data = (s == 3) ? bus3 : Zee;

endmodule

June 1993 5-5

Assignments
Continuous Assignments

The following sequence of events is experienced during simulation of the
description in Example 5-2:

1. The value of s, a bus selector input variable, is checked in the
assign statement; based on the value of s, the net data receives the
data from one of the four input busses.

2. The setting of data triggers the continuous assignment in the net
declaration for busout; if enable is set, the contents of data are
assigned to busout; if enable is clear, the contents of Zee are
assigned to busout.

Note that the parameter Zee has an explicit width specification on the
high impedance value. This is recommended practice, because it avoids
mistakes where extra bits of a value would cause erroneous results. The
default width of the high-impedance value (z) is the word size of the host
machine, typically 32 bits.

Please note: There is a functional difference between a net
declaration assignment and a continuous assignment statement. In
net declaration assignments, all changes during a time unit in the
expression on the right-hand side of the assignment operator (=)
propagate to the net. In continuous assignment statements, the value
in the expression on the right-hand side of the assignment operator (=)
propagates to the net after the final change to the value of the
expression.

5.1.3
Delays

A delay given to a continuous assignment specifies the time duration
between a right-hand side operand value change and the assignment
made to the left-hand side. If the left-hand side references a scalar net,
then the delay is treated in the same way as for gate delays—that is,
different delays can be given for the output rising, falling, and changing
to high impedance (see Chapter 6, Gate and Switch Level Modeling).

If the left-hand side references a vector net, then up to three delays can
also be applied. The following rules determine which delay controls the
assignment:

• If the right-hand side LSB is non-zero or becomes zero, then the
falling delay is used.

• If the right-hand side LSB is z or becomes z, then the turn-off
delay is used.

• If the right-hand side LSB is a one or becomes a one, then the
rising delay is used.

• If the right-hand side LSB is an x or becomes an x, then the lesser
of the delay values is used.

When different rise and fall delays are specified for a vector net, the actual
delay choosen is based on the value or value change of the least significant
bit. An example of this is shown in Example 5-3.

5-6 June 1993

Assignments
Continuous Assignments

Example 5-3: Delay based on the value or value change of the least significant bit

In order to model rise and fall delay for individual bits, you need to expand
the register expression to a single bit expression as shown in Example 5-4.

module least_significant_bit (out);
output [3:0] out;
reg [3:0] a;
wire [3:0] b;

assign #(10,20) b = a;

initial
begin

a = ‘b0000;
#100 a = ‘b1101;
#100 a = ‘b0111;
#100 a = ‘b1110;
end

initial
begin
$monitor($time, , “a=%b, b=%b”,a, b);
#1000 $finish;
end

endmodule

Compiling source file
Highest level modules:
least_significant_bit

0 a=0000, b=xxxx
20 a=0000, b=0000

100 a=1101, b=0000
110 a=1101, b=1101 // LSB is high so uses a rise delay
200 a=0111, b=1101
210 a=0111, b=0111 // LSB is high so uses a rise delay
300 a=1110, b=0111
320 a=1110, b=1110 // LSB is low so uses a fall delay

June 1993 5-7

Assignments
Continuous Assignments

Example 5-4: Delay based on the rise and fall delay for individualbits

module least_significant_bit (out);
output [3:0] out;
reg [3:0] a;
wire [3:0] b;

assign #(10,20) b[0] = a[0],
b[1] = a[1],
b[2] = a[2],
b[3] = a[3];

initial
begin

a =‘b0000;
#100 a =’b1101;
#100 a =’b0111;
#100 a =’b1110;
end

initial
begin

$monitor($time, , “a=%b, b=%b”,a, b);
#1000 $finish;

end

endmodule

Compiling source file
Highest level modules:
least_significant_bit

0 a=0000, b=xxxx
20 a=0000, b=0000
100 a=1101, b=0000
110 a=1101, b=1101 // rise delay of 10 time units
200 a=0111, b=1101
210 a=0111, b=1111 // rise delay of 10 time units
220 a=0111, b=0111 // fall delay of 20 time units
300 a=1110, b=0111
310 a=1110, b=1111 // rise delay of 10 time units
320 a=1110, b=1110 // fall delay of 20 time units

5-8 June 1993

Assignments
Continuous Assignments

Note that specifying the delay in a continuous assignment that is part of
the net declaration is different from specifying a net delay and then
making a continuous assignment to the net. A delay value can be applied
to a net in a net declaration, as in the following example:

wire #10 wireA;

This syntax, called a net delay, means that any value change that is to
be applied to wireA by some other statement is delayed for ten time
units before it takes effect. When there is a continuous assignment in a
declaration, the delay is part of the continuous assignment and is not a
net delay. Thus, it is not added to the delay of other drivers on the net.
Furthermore, if the assignment is to an expanded vector net (a net not
specified with the keyword vectored), then the rising and falling delays
are not applied to the individual bits if the assignment is included in the
declaration.

In situations where a right-hand side operand changes before a previous
change has had time to propagate to the left-hand side, then the latest
value change is the only one to be applied. That is, only one assignment
occurs. This effect is known as inertial delay.

The following example implements a vector exclusive OR. The size and
delay of the operation are controlled by parameters, which can be
changed when instances of this module are created. See Section 12.2 for
details on Overriding Module Parameter Values.

Example 5-5: Use of delays with assignments

module modxor(axorb, a, b);

parameter size = 8, delay = 15;

output [size-1:0] axorb;

input [size-1:0] a, b;

wire [size-1:0] #delay axorb = a ^ b;

endmodule

June 1993 5-9

Assignments
Procedural Assignments

5.1.4
Strength

The driving strength of a continuous assignment can be specified by the
user. This applies only to assignments to scalar nets of the types listed
below:

wire wand tri trireg
wor triand tri0

trior tri1

Continuous assignments driving strengths can be specified in either a
net declaration or in a stand-alone assignment, using the assign
keyword. The strength specification, if provided, must immediately
follow the keyword (either the keyword for the net type or the assign
keyword) and must precede any delay specified. Whenever the
continuous assignment drives the net, the strength of the value will
simulate as specified.

A <drive_strength> specification contains one strength value that
applies when the value being assigned to the net is 1 and a second
strength value that applies when the assigned value is 0. The following
keywords specify the strength value for an assignment of 1:

supply1 strong1 pull1 weak1 highz1

The following keywords specify the strength value for an assignment of 0:

supply0 strong0 pull0 weak0 highz0

The order of the two strength specifications is arbitrary. The following
two rules constrain the use of drive strength specifications:

• The strength specifications (highz1, highz0) and (highz0,
highz1) are illegal language constructs.

• When the keyword vectored is specified together with a
specification of strength on a continuous assignment, the keyword
vectored is ignored.

5.2
Procedural Assignments

The primary discussion of procedural assignments is in Section 8.2.
However, a description of the basic ideas here will highlight the
differences between continuous assignments and procedural
assignments.

5-10 June 1993

Assignments
Accelerated Continuous Assignments

As stated above, continuous assignments drive nets in a manner similar
to the way gates drive nets. The expression on the right-hand side can
be thought of as a combinatorial circuit that drives the net continuously.
The word continuous is important; continuous assignments cannot be
disabled.

In contrast, procedural assignments put values in registers. The
assignment does not have duration; instead, the register holds the value
of the assignment until the next procedural assignment to that register.

Procedural assignments occur within procedures such as always,
initial, task, and function (these procedures are described in later
chapters), and can be thought of as ”triggered” assignments. The trigger
occurs when the flow of execution in the simulation reaches an
assignment within a procedure. Reaching the assignment can be
controlled by conditional statements. Event controls, delay controls, if
statements, case statements, and looping statements can all be used to
control whether assignments get evaluated. Chapter 8, Behavioral
Modeling, gives details and examples.

5.3
Accelerated Continuous Assignments

This section describes how you can accelerate continuous assignments
to make your designs simulate faster. This chapter also explains the
following:

• the restrictions on accelerated continuous assignments

• how to accelerate continuous assignments

• the kinds of designs that simulate faster with this feature and the
kind of design that simulates slower

• how accelerated continuous assignments affect simulation

5.3.1
The Restrictions on Accelerated Continuous Assignments

You can accelerate continuous assignments only if they meet the
restrictions described in this section. These restrictions apply to the
following syntax elements of a continuous assignment statement:

• the types of nets on the left-hand side of the assignment operator

• the operators and operands in the expressions on the right-hand
side of the assignment operator

• the contents and use of a delay expression

June 1993 5-11

Assignments
Accelerated Continuous Assignments

Left-hand side restrictions

You can accelerate a continuous assignment if it assigns a value to one
of the following types of nets:

• a scalar net

• a expanded vector net that contains less than 64 bits

• a bit-select of an expanded vector net

• a part-select that is less than 64 bits of an expanded vector net

You can also accelerate a continuous assignment if it assigns a value to
a concatenation of these types of nets, provided that the concatenation
contains fewer than 64 bits.

An expanded vector net is a vector net that Verilog-XL converts to a
group of scalar nets. This group contains one scalar net for each bit of
the vector net. Verilog-XL automatically converts or “expands” a vector
net for a number of reasons, which include the following:

• to handle bit-selects and part-selects

• to improve performance and to accelerate continuous assignments

You can require Verilog-XL to expand a vector net by including the
keyword scalared in the net’s declaration.

An unexpanded vector net is a vector net that Verilog-XL does not
convert to scalar nets. You can prevent Verilog-XL from expanding a
vector net by including the keyword vectored in its declaration.

Example 5-6 shows continuous assignments that you can accelerate
because the left-hand side meets these restrictions.

5-12 June 1993

Assignments
Accelerated Continuous Assignments

Example 5-6: Left-hand sides of continuous assignments
that can be accelerated

Verilog-XL cannot accelerate a continuous assignment to the following
types of vector nets:

• vector nets with 64 or more bits

• vector nets declared with the keyword vectored

To accelerate a continuous assignment to a vector net, Verilog-XL must
expand that vector net. If you declare a vector net with the keyword
vectored, Verilog-XL cannot accelerate a continuous assignment to it.

module aca1;
reg r1,r2,r3,r4;
wire c;
wire [3:0]a,d;
wire scalared [3:0] e,f,g;

assign #5 c=a[0],

d={r1,r2,r3,r4},

e={r1,r2,r3,r4},

f[0]=r2,

f[3:2]={r3,r4},

{f[1],g[2:0]}=d;
•
•
•
endmodule

continuous assignment to a
scalar net

continuous assignment to a
bit-select of an expanded
vector net

continuous assignment to
expanded vector nets

continuous assignment to a
part-select of an expanded
vector net

continuous assignment to a
concatenation of valid nets

June 1993 5-13

Assignments
Accelerated Continuous Assignments

Example 5-7 shows continuous assignments that you cannot accelerate
because the left-hand side does not meet these restrictions.

Example 5-7: Left-hand side of continuous assignments
that cannot be accelerated

Right-hand side restrictions

You can accelerate a continuous assignment only if the expression on
the right-hand side contains certain operands and operators.

The right-hand expression of a continuous assignment can contain any
of the following operands:

• scalar nets

• expanded vector nets that contain less than 64 bits

• bit-selects of expanded vector nets

• part-selects that are less than 64 bits of expanded vector nets

• scalar registers

• constants

You can also accelerate a continuous assignment where the right-hand
side is a concatenation of these types of nets, provided that the
concatenation contains fewer than 64 bits.

module aca2;
reg r1,r2,r3,r4;
wire [63:0] a;
wire vectored [3:0] b;

assign a = r1,

b={r1,r2,r3,r4};
•
•
•
endmodule

unaccelerated continuous
assignment to an unexpanded
vector net

unaccelerated continuous
assignment to an expanded
vector net with more than 63 bits

5-14 June 1993

Assignments
Accelerated Continuous Assignments

Example 5-8 shows continuous assignments that you can accelerate
because the operands in the expression on the right-hand side meet
these restrictions.

Example 5-8: Operands in continuous assignments that can be accelerated

In Example 5-8, all operands are less than 64 bits.

The prohibited operands are as follows:

• expanded vector nets that contain more than 63 bits

• unexpanded vector nets

• bit-selects of unexpanded vector nets

• part-selects of unexpanded vector nets

• vector registers

• bit-selects of vector registers

• part-selects of vector registers

module aca3;
reg r1;
wire a,b;
wire [3:0] c,d;
wire scalared [3:0] e,f;
wire scalared [31:23] g,h;

assign
h[31]=a & b,

h[31:28]=c | d,

h[27]=e[0] ^ f[1],

h[26:24]=e[2:0],

h[23]=r1;
•
•
•

endmodule

operands are scalar nets

operands are expanded
vector nets

operands are bit-selects of
expanded vector nets

operand is a part-select of
an expanded vector net

operand is a scalar reg

June 1993 5-15

Assignments
Accelerated Continuous Assignments

Example 5-9 shows continuous assignments that you cannot accelerate
because the operands in the expression of the right-hand side do not
meet these restrictions.

Example 5-9: Operands in continuous assignments that cannot be accelerated

module aca4;
reg [7:0]a,b;
wire vectored [7:0] c;
wire vectored [4:0] d;
wire [7:0] e,f;
wire [3:0] g,h,i;
wire [63:0] j;
assign

i = j,

e=c,

f[0]=c[0] & d[0],

g=d[3:0],

e=a,

g[0]=b[1],

h=b[3:0];
•
•
•

endmodule

unaccelerated because
operand is a vector reg

unaccelerated because
operand is an unexpanded
vector net

unaccelerated because
operands are bit-selects of
an unexpanded vector net

unaccelerated because
operand is a part-select of
an unexpanded vector net

unaccelerated because
operand is a bit-select of a
vector reg

unaccelerated because
operand is a part-select of
a vector reg

unaccelerated because
operand is a vector net
with more than 63 bits

5-16 June 1993

Assignments
Accelerated Continuous Assignments

The expression on the right-hand side of a continuous assignment can
only contain the following operators:

& bit-wise and reduction AND

&& logical AND

~& reduction NAND

| bit-wise and reduction OR

|| logical OR

~| reduction NOR

^ bit-wise and reduction XOR

~^ bit-wise and reduction XNOR

~ bit-wise NOT

! logical NOT

{} concatenation

{{}} duplicate concatenation

?: conditional

== logical equality

!= logical inequality

Example 5-10 shows continuous assignments that you can accelerate
because the operators in the expression on the right-hand side meet
these restrictions.

June 1993 5-17

Assignments
Accelerated Continuous Assignments

Example 5-10: Operators in continuous assignments that can be accelerated

module aca5;
reg r1,r2,r3,r4,r5,r6,r7;
wire a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,s,t;
wire [1:0]u,v,w,y;
assign

a=r1 & r2,

b=&s,

c=r1 && r2,

d=~&u,

e=r2 | r3,

f=r3 || r4,

g=|u,

h=~|u,

i=r4 ^ r5,

j=^u,

k=r5 ~^r6,

l=~^v,

m=~j,

n = !r1,

w={a,b},

y={2{r7}},

q=r1 ? a : b,

s= r1 == r2,

t= r3 != r4;
endmodule

bit-wise AND operator

unary reduction NAND operator

bit-wise OR operator

unary reduction OR operator

bit-wise XOR operator

unary reduction XNOR operator

bit-wise XNOR operator

unary reduction XNOR operator

bit-wise NOT operator

concatenation operator

duplicate concatenation operator

conditional operator

unary reduction AND operator

unary reduction NOR operator

logical AND operator

logical OR operator

logical NOT operator

logical equality operator

logical inequality operator

5-18 June 1993

Assignments
Accelerated Continuous Assignments

You can enter other operators in the right-hand side of accelerated
continuous assignments, but only in an expression or sub-expression
whose operands are constants. (A sub-expression is a part of an
expression that Verilog-XL can evaluate separately.) The prohibition
against other operators does not apply in these expressions or
sub-expressions because Verilog-XL evaluates them at compile time.
Example 5-11 shows how you can use other operators in accelerated
continuous assignments.

Example 5-11: Other operators in accelerated continuous assignments

module aca6;
parameter p1=8,p2=15;
reg r1;
wire [3:0] a,b,c;

assign
a = 1 + p1,

b = r1 | (p2 << 1),

c {r1,(p2 % p1)};
•
•
•

endmodule

expression with addition
operator and constant
operands

sub-expression with shift
operator and constant
operands

sub-expression with
modulo operator and
constant operands

June 1993 5-19

Assignments
Accelerated Continuous Assignments

Example 5-12 shows continuous assignments that you cannot
accelerate because they use other operators with variable operands.

Example 5-12: Operators in continuous assignments that cannot be accelerated

Delay expression restrictions

You can accelerate a continuous assignment that includes a delay only
if that delay is a constant or an expression whose operands are
constants.

module aca7;
reg r1,r2;
reg [3:0] r3;
wire a,b,c;
wire [4:0] d;
wire [31:0] e;

assign
e = r1 * r2,

a = (b <= c),

d = r3 << 1;
endmodule

expression with an
arithmetic operator and
variable operands

expression with a relational
operator and variable
operands

expression with a shift
operator and variable
operands

5-20 June 1993

Assignments
Accelerated Continuous Assignments

Example 5-13 shows continuous assignments that you can accelerate
because the delay expression meets this restriction.

Example 5-13: Delay expressions in continuous assignments
that can be accelerated

Example 5-14 shows continuous assignments that you cannot
accelerate because the delay expression does not meet this restriction.

Example 5-14: Delay expressions in continuous assignments
that cannot be accelerated

Restriction summary

Figure 5-1 summarizes the valid syntax elements in accelerated
continuous assignments.

module aca8;
reg r1,r2;
wire a,b,q,qb;
parameter p=10;

assign #p q = ~(a & qb);

assign #(p+1) qb = ~(b & q);
•
•
•

endmodule

delay expression with
constant operands

delay is a constant

module aca9;
wire a,b,c,d;

reg r1,r2;

assign #r1 a=c;

assign #(a & r2) b=d;
•
•
•

endmodule

delay is not a constant

operands in delay
expression are variables

June 1993 5-21

Assignments
Accelerated Continuous Assignments

Figure 5-1: Syntax elements of an accelerated continuous assignment

assign

#delay net = expression;

constant or
expression
whose operands
are constants

scalar net

expanded vector net that is less than 64 bits

bit-select of an expanded vector net

part-select that is less than 64 bits of an expanded
vector net

concatenation of these types of nets

operators

& bit-wise and reduction AND

&& logical AND

~& reduction NAND

| bit-wise and reduction OR

|| logical OR

~| reduction NOR

^ bit-wise and reduction XOR

~^ bit-wise and reduction XNOR

~ bit-wise NOT

! logical NOT

? : conditional

{} concatenation

{{}} duplicate concatenation

?: conditional

== logical equality

!= logical inequality

operands

scalar nets

expanded vector nets that are less
than 64 bits

bit-selects of expanded vector nets

part-selects that are less than 64
bits of expanded vector nets

scalar registers

constants

5-22 June 1993

Assignments
Accelerated Continuous Assignments

5.3.2
How to Control the Acceleration of Continuous
Assignments

Accelerate continuous assignments in your design by entering the +caxl
command line option. When you enter this option, you accelerate the
continuous assignments in the regions of your design that can contain
accelerated primitives. You specify these regions with the following
mechanisms:

• -a command line option

• ‘accelerate compiler directive

• ‘noaccelerate compiler directive

The following command line shows how the -a option works with the
+caxl option:

verilog source.v -a +caxl

This command line tells Verilog-XL to accelerate all the primitives and
continuous assignments in source.v that it can.

Example 5-15 shows the regions of a sample design, delimited by
‘accelerate and ‘noaccelerate, whose continuous assignments you
can accelerate if you enter the +caxl option, without the -a option, on
the command line. In Example 5-15, the continuous assignments in the
grey regions can be accelerated, and the other continuous assignments
cannot be accelerated.

June 1993 5-23

Assignments
Accelerated Continuous Assignments

Example 5-15: Design regions that you can accelerate

‘accelerate
module mod1;
·
·
·

assign a = b & c;
·
·
·

endmodule
‘noaccelerate
module mod2;
·
·
·

assign d = e | f;
·
·
·

endmodule
‘accelerate
module mod3 (v,l,g);
·
·
·

assign g =h ^ i;
·
·
·

endmodule
‘noaccelerate
module mod4(j,t,v);
·
·
·

assign j = e ~^ k;
·

·

·

endmodule

‘noaccelerate prevents
accelerated continuous
assignments in this region

‘noaccelerate prevents
accelerated continuous
assignments in this region

‘accelerate permits
accelerated continuous
assignments in this region

‘accelerate permits
accelerated continuous
assignments in this region

5-24 June 1993

Assignments
Accelerated Continuous Assignments

5.3.3
The Effects of Accelerated Continuous Assignments

Accelerating continuous assignments can have the following effects on
your simulation:

• faster simulation

• slightly slower compilation

• slightly more memory use

• simulation results that are different from the results when you do
not accelerate continuous assignments

These effects are described in the following subsections.

Simulation speed

Accelerating continuous assignments does not increase the simulation
speed of all designs. The types of designs that simulate faster, and the
one type that simulates slower, are described in this subsection.

Designs that simulate faster
The following is a list of the kinds of designs that simulate faster when
you accelerate continuous assignments:

• designs that consist entirely of accelerated continuous
assignments to scalar nets

• designs that are a combination of gate-level and accelerated
continuous assignments

• gate-level designs that are stimulated by accelerated continuous
assignments

• designs that consist of accelerated continuous assignments to
large vector nets

June 1993 5-25

Assignments
Accelerated Continuous Assignments

The following are examples of these designs and an explanation of how
accelerated continuous assignment increases their simulation speed.

1. Accelerating continuous assignments is what most increases the
simulation speed of designs that consist entirely of accelerated
continuous assignments to scalar nets. These designs simulate
approximately eight times faster when you accelerate all their
continuous assignments. The following source description shows a
design of a multiplexer that consists of accelerated continuous
assignments to scalar nets:

Example 5-16: Design that consists entirely of
accelerated continuous assignments

In this source description, data flows through a path of accelerated
continuous assignments.

module aca10 (op1,op2,s1,s2,out,cr);
input op1,op2,s1,s2;
output out,cr;
wire nop1,nop2,mx1,mx2;
assign

nop1 = ~op1,
nop2 = ~op2,
mx1 = ((op1 & s1)|(nop1 & ~s1)),
mx2 = ((op2 & s2)|(nop2 & ~s2)),
out = mx1 ^ mx2,
cr = mx1 & mx2;

endmodule

5-26 June 1993

Assignments
Accelerated Continuous Assignments

2. Accelerating continuous assignments also increases the simulation
speed of designs whose logic is a combination of gate-level and
accelerated continuous assignments. How much the acceleration of
the continuous assignments increases the simulation speed
depends on the proportion of continuous assignments to gate
instances. The following source description shows a design that is
a combination of accelerated continuous assignments and gate
instances:

Example 5-17: Design that consists of accelerated continuous
assignments and gate instances

In this source description, data flows from gates to continuous
assignments and back to gates.

module aca11 (op1,op2,s1,s2,out,cr);
input op1,op2,s1,s2;
output out,cr;
wire nop1,nop2,mx1,mx2;
assign

mx1 = ((op1 & s1)|(nop1 & ~s1)),
mx2 = ((op2 & s2)|(nop2 & ~s2));

not nt1 (nop1,op1),
nt2 (nop2,op2);

xor xr1 (out,mx1,mx2);
and ad1 (cr,mx1,mx2);

endmodule

June 1993 5-27

Assignments
Accelerated Continuous Assignments

3. Accelerating continuous assignments also increases the simulation
speed of gate-level designs that are stimulated by accelerated
continuous assignments. How much the acceleration of the
continuous assignments increases the simulation speed of these
designs also depends on the proportion of continuous assignments
to gate instances, as in the following source description:

Example 5-18: Design that contains only one
accelerated continuous assignment

This design includes one accelerated continuous assignment.
Accelerating this continuous assignment does little to increase the
design’s simulation speed because the accelerated continuous
assignment is such a small proportion of this design.

module aca13;
reg r1,r2,r3;
wire a;
assign a=r3;

twoway t1 (r1,r2,a,o);
initial

•
•
•

endmodule

module twoway(r1,r2,a,o);
input r1,r2;
output o;
inout a;

bufif1(a,r1,r2);
bufif0(o,a,r2);

endmodule

one accelerated continuous
assignment that drives an
inout port

5-28 June 1993

Assignments
Accelerated Continuous Assignments

4. Accelerating the continuous assignments in designs that consist of
continuous assignments to large vector nets results in the smallest
increase in simulation speed. Continuous assignments to vector
nets 64 bits wide and larger cannot be accelerated. The closer the
left-hand side of a continuous assignment comes to this limit of 63
bits, the more time the XL algorithm needs to simulate the
continuous assignment, as in the following source description:

Example 5-19: Design that consists of continuous
assignments to large vector nets

This source description shows the continuous assignment of expressions
with large operands and several operators to very large vector nets. The
greater the complexity of the expression on the right-hand side and the
larger the vector net on the left-hand side, the more time the XL
algorithm needs to simulate the continuous assignment.

module aca14;
wire [30:0]
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t;
wire [61:0] m1,m2,m3,m4,m5;
assign m1=~(({a,b}&{d,e})|({c,d}^{e,f})),

m2={e,f}&{h,i},
m3=~{i,j},
m4=~({m,n}|{a,b}),
m5=((q & r)^(p | t)~^{q,r});

endmodule

June 1993 5-29

Assignments
Accelerated Continuous Assignments

Designs that simulate slower

Not all designs with continuous assignments that can be accelerated
simulate faster with the XL algorithm. XL speeds up the simulation when
it processes a continuous assignment, but transitions between the XL
and non-XL algorithms slow down the simulation. A large number of
transitions can make a simulation run slower than if no part of it is
simulated by the XL algorithm. The following is a list of designs that
contain continuous assignments that you can accelerate, but which
simulate faster without accelerating these continuous assignments.

1. Designs whose data flows many times from accelerated to
nonaccelerated continuous assignments simulate at a slower speed
than if you did not accelerate any continuous assignment. This
slower speed is caused by the performance cost of a large number
of transitions between algorithms. The following source description
shows data flowing through a path of continuous assignments that
cause Verilog-XL to transition frequently between algorithms.

Example 5-20: Design whose data flows from accelerated
to nonaccelerated continuous assignments

module aca15;
wire a,b,c,d,e,f,g,h,i,j,k,l,m,n,o;
assign

a = b & c,
b = d + e,
d = f | g,
f = h - i,
h = j ^ k,
j = l * m,
l = n ~^ o;

•
•
•

endmodule

accelerated
continuous
assignments

nonaccelerated
continuous
assignments

5-30 June 1993

Assignments
Accelerated Continuous Assignments

2. Designs whose data flows many times from accelerated continuous
assignments to procedural assignments also simulate at a slower
speed that if you did not accelerate any continuous assignment.
This slower speed is also caused by transitions between algorithms.
In the following source description, data flows between both kinds
of assignments.

Example 5-21: Design whose simulation causes
transitions between algorithms

In this source description, a value of 1 propagates through several wires
and registers. Data flow begins with a procedural assignment to reg r5,
then through a path of registers and wires that are driven by alternating
continuous and procedural assignments.

module aca16;
reg r1,r2,r3,r4,r5;
wire a,b,c,d,e;
assign

a = r1,
b = r2,
c = r3,
d = r4,
e = r5;

always
begin
#10 r1 = b;
#10 r2 = c;
#10 r3 = d;
#10 r4 = e;
#10 r5 = ~r5;
end

initial
begin
r5=1;

•
•
•

endmodule

accelerated continuous
assignments

procedural assignments

June 1993 5-31

Assignments
Accelerated Continuous Assignments

Compilation speed

During compilation, Verilog-XL processes accelerated continuous
assignments so that they can be simulated by the XL algorithm.
Therefore, compilation time increases as the number of accelerated
continuous assignments increases. A design that consists entirely of
continuous assignments that can be accelerated takes approximately
twice as long to compile if you accelerate these continuous assignments.
(In a typical worst-case design, compilation without accelerated
continuous assignments took 19 seconds; compilation with accelerated
continuous assignments took 41 seconds.)

Memory usage
Accelerated continuous assignments cause Verilog-XL to use more
memory at compile time, but less memory at run time.

Verilog-XL needs more memory to compile a design with accelerated
continuous assignments. A design that consists entirely of accelerated
continuous assignments needs 20% more memory to compile.

Accelerated continuous assignments reduce Verilog-XL’s memory
requirements during simulation.

The possibility of different results

Accelerating continuous assignments to vector nets when these
continuous assignments include delay expressions can produce
simulation results that differ from the results produced without
accelerating these continuous assignments. This possible difference is
caused by the difference between how the XL and non-XL algorithm
simulate these continuous assignments.

In both the XL and non-XL algorithms, when a continuous assignment
statement includes a delay expression, Verilog-XL evaluates the
right-hand side and schedules the assignment to occur after the delay
elapses. In the non-XL algorithm, if any of the bits of the right-hand side
change before the delay elapses, Verilog-XL re-evaluates the entire
right-hand side and reschedules the assignment. In the XL algorithm, if
any of the bits of the right-hand side change before the delay elapses,
Verilog-XL schedules a subsequent assignment to those bits.

Example 5-22 and Example 5-23 show how accelerating continuous
assignments can produce different simulation results.

Example 5-22 shows a module that contains accelerated and
unaccelerated continuous assignments that assign the same values and
include the same delay expression. The accelerated continuous
assignments propagate value changes at simulation times when the
unaccelerated continuous assignments do not propagate these value
changes.

5-32 June 1993

Assignments
Accelerated Continuous Assignments

Example 5-22: Module with accelerated and unaccelerated
continuous assignments

In Example 5-22, the continuous assignment to wire a1 of the
concatenation of scalar registers c1 and c2 can be accelerated. The
continuous assignment to wire b1 cannot be accelerated because it
assigns a value to an unexpanded vector net; the continuous assignment
to wire a2 cannot be accelerated because its operand is a vector reg. The
delay expression in these continuous assignments is 10 time units.

Procedural assignments assign the same values to the right-hand sides
of these continuous assignments. These procedural assignments specify
a five time unit interval between bit changes of the right-hand sides of
the continuous assignments.

module dif;
wire [1:0] a1, a2;
wire vectored [1:0] b1;
reg c1,c2;
reg [1:0] d1;

assign #10 a1 = {c1,c2};

assign
#10 b1 = {c1,c2},

a2 = d1;

initial
begin
$monitor(”At simulation time %0d\n”,
$time,
” accelerated a1=%b\n”,a1,
”unaccelerated b1=%b a2=%b\n\n”,b1,a2);
#25 c1 = 0;

d1[1] = 0;
#5 c2 = 0;

d1[0] = 0;
end

endmodule

procedural assignments
of the same values to the
bits of the right-hand side
of all three continuous
assignments

an accelerated
continuous assignment

unaccelerated
continuous assignments

June 1993 5-33

Assignments
Accelerated Continuous Assignments

The XL algorithm schedules the propagation of all bit changes as they
occur; the non-XL algorithm does not. The difference in simulation
results between the accelerated and unaccelerated continuous
assignments is shown in Example 5-23.

Example 5-23: Different simulation results

In Example 5-23, the XL algorithm assigns values to a1 at simulation
times 35 and 40. The non-XL algorithm waits until simulation time 40
to assign values.

Highest level modules:
dif

At simulation time 0
accelerated a1=xx

unaccelerated b1=xx a2=xx

At simulation time 35
accelerated a1=0x

unaccelerated b1=xx a2=xx

At simulation time 40
accelerated a1=00

unaccelerated b1=00 a2=00

The XL algorithm assigns
values at simulation times
35 and 40.

The non-XL algorithm
assigns values only at
simulation time 40.

